3.13 \(\int \sec ^3(c+d x) (a+i a \tan (c+d x)) \, dx\)

Optimal. Leaf size=54 \[ \frac{i a \sec ^3(c+d x)}{3 d}+\frac{a \tanh ^{-1}(\sin (c+d x))}{2 d}+\frac{a \tan (c+d x) \sec (c+d x)}{2 d} \]

[Out]

(a*ArcTanh[Sin[c + d*x]])/(2*d) + ((I/3)*a*Sec[c + d*x]^3)/d + (a*Sec[c + d*x]*Tan[c + d*x])/(2*d)

________________________________________________________________________________________

Rubi [A]  time = 0.0352547, antiderivative size = 54, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 22, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.136, Rules used = {3486, 3768, 3770} \[ \frac{i a \sec ^3(c+d x)}{3 d}+\frac{a \tanh ^{-1}(\sin (c+d x))}{2 d}+\frac{a \tan (c+d x) \sec (c+d x)}{2 d} \]

Antiderivative was successfully verified.

[In]

Int[Sec[c + d*x]^3*(a + I*a*Tan[c + d*x]),x]

[Out]

(a*ArcTanh[Sin[c + d*x]])/(2*d) + ((I/3)*a*Sec[c + d*x]^3)/d + (a*Sec[c + d*x]*Tan[c + d*x])/(2*d)

Rule 3486

Int[((d_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(b*(d*Sec[
e + f*x])^m)/(f*m), x] + Dist[a, Int[(d*Sec[e + f*x])^m, x], x] /; FreeQ[{a, b, d, e, f, m}, x] && (IntegerQ[2
*m] || NeQ[a^2 + b^2, 0])

Rule 3768

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> -Simp[(b*Cos[c + d*x]*(b*Csc[c + d*x])^(n - 1))/(d*(n -
 1)), x] + Dist[(b^2*(n - 2))/(n - 1), Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1
] && IntegerQ[2*n]

Rule 3770

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rubi steps

\begin{align*} \int \sec ^3(c+d x) (a+i a \tan (c+d x)) \, dx &=\frac{i a \sec ^3(c+d x)}{3 d}+a \int \sec ^3(c+d x) \, dx\\ &=\frac{i a \sec ^3(c+d x)}{3 d}+\frac{a \sec (c+d x) \tan (c+d x)}{2 d}+\frac{1}{2} a \int \sec (c+d x) \, dx\\ &=\frac{a \tanh ^{-1}(\sin (c+d x))}{2 d}+\frac{i a \sec ^3(c+d x)}{3 d}+\frac{a \sec (c+d x) \tan (c+d x)}{2 d}\\ \end{align*}

Mathematica [A]  time = 0.0129146, size = 54, normalized size = 1. \[ \frac{i a \sec ^3(c+d x)}{3 d}+\frac{a \tanh ^{-1}(\sin (c+d x))}{2 d}+\frac{a \tan (c+d x) \sec (c+d x)}{2 d} \]

Antiderivative was successfully verified.

[In]

Integrate[Sec[c + d*x]^3*(a + I*a*Tan[c + d*x]),x]

[Out]

(a*ArcTanh[Sin[c + d*x]])/(2*d) + ((I/3)*a*Sec[c + d*x]^3)/d + (a*Sec[c + d*x]*Tan[c + d*x])/(2*d)

________________________________________________________________________________________

Maple [A]  time = 0.081, size = 55, normalized size = 1. \begin{align*}{\frac{{\frac{i}{3}}a}{d \left ( \cos \left ( dx+c \right ) \right ) ^{3}}}+{\frac{a\sec \left ( dx+c \right ) \tan \left ( dx+c \right ) }{2\,d}}+{\frac{a\ln \left ( \sec \left ( dx+c \right ) +\tan \left ( dx+c \right ) \right ) }{2\,d}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^3*(a+I*a*tan(d*x+c)),x)

[Out]

1/3*I/d*a/cos(d*x+c)^3+1/2*a*sec(d*x+c)*tan(d*x+c)/d+1/2/d*a*ln(sec(d*x+c)+tan(d*x+c))

________________________________________________________________________________________

Maxima [A]  time = 1.11126, size = 82, normalized size = 1.52 \begin{align*} -\frac{3 \, a{\left (\frac{2 \, \sin \left (d x + c\right )}{\sin \left (d x + c\right )^{2} - 1} - \log \left (\sin \left (d x + c\right ) + 1\right ) + \log \left (\sin \left (d x + c\right ) - 1\right )\right )} - \frac{4 i \, a}{\cos \left (d x + c\right )^{3}}}{12 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^3*(a+I*a*tan(d*x+c)),x, algorithm="maxima")

[Out]

-1/12*(3*a*(2*sin(d*x + c)/(sin(d*x + c)^2 - 1) - log(sin(d*x + c) + 1) + log(sin(d*x + c) - 1)) - 4*I*a/cos(d
*x + c)^3)/d

________________________________________________________________________________________

Fricas [B]  time = 1.11928, size = 520, normalized size = 9.63 \begin{align*} \frac{-6 i \, a e^{\left (5 i \, d x + 5 i \, c\right )} + 16 i \, a e^{\left (3 i \, d x + 3 i \, c\right )} + 6 i \, a e^{\left (i \, d x + i \, c\right )} + 3 \,{\left (a e^{\left (6 i \, d x + 6 i \, c\right )} + 3 \, a e^{\left (4 i \, d x + 4 i \, c\right )} + 3 \, a e^{\left (2 i \, d x + 2 i \, c\right )} + a\right )} \log \left (e^{\left (i \, d x + i \, c\right )} + i\right ) - 3 \,{\left (a e^{\left (6 i \, d x + 6 i \, c\right )} + 3 \, a e^{\left (4 i \, d x + 4 i \, c\right )} + 3 \, a e^{\left (2 i \, d x + 2 i \, c\right )} + a\right )} \log \left (e^{\left (i \, d x + i \, c\right )} - i\right )}{6 \,{\left (d e^{\left (6 i \, d x + 6 i \, c\right )} + 3 \, d e^{\left (4 i \, d x + 4 i \, c\right )} + 3 \, d e^{\left (2 i \, d x + 2 i \, c\right )} + d\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^3*(a+I*a*tan(d*x+c)),x, algorithm="fricas")

[Out]

1/6*(-6*I*a*e^(5*I*d*x + 5*I*c) + 16*I*a*e^(3*I*d*x + 3*I*c) + 6*I*a*e^(I*d*x + I*c) + 3*(a*e^(6*I*d*x + 6*I*c
) + 3*a*e^(4*I*d*x + 4*I*c) + 3*a*e^(2*I*d*x + 2*I*c) + a)*log(e^(I*d*x + I*c) + I) - 3*(a*e^(6*I*d*x + 6*I*c)
 + 3*a*e^(4*I*d*x + 4*I*c) + 3*a*e^(2*I*d*x + 2*I*c) + a)*log(e^(I*d*x + I*c) - I))/(d*e^(6*I*d*x + 6*I*c) + 3
*d*e^(4*I*d*x + 4*I*c) + 3*d*e^(2*I*d*x + 2*I*c) + d)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} a \left (\int i \tan{\left (c + d x \right )} \sec ^{3}{\left (c + d x \right )}\, dx + \int \sec ^{3}{\left (c + d x \right )}\, dx\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**3*(a+I*a*tan(d*x+c)),x)

[Out]

a*(Integral(I*tan(c + d*x)*sec(c + d*x)**3, x) + Integral(sec(c + d*x)**3, x))

________________________________________________________________________________________

Giac [B]  time = 1.18881, size = 134, normalized size = 2.48 \begin{align*} \frac{3 \, a \log \left ({\left | \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 1 \right |}\right ) - 3 \, a \log \left ({\left | \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - 1 \right |}\right ) + \frac{2 \,{\left (3 \, a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{5} - 6 i \, a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{4} - 3 \, a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - 2 i \, a\right )}}{{\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 1\right )}^{3}}}{6 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^3*(a+I*a*tan(d*x+c)),x, algorithm="giac")

[Out]

1/6*(3*a*log(abs(tan(1/2*d*x + 1/2*c) + 1)) - 3*a*log(abs(tan(1/2*d*x + 1/2*c) - 1)) + 2*(3*a*tan(1/2*d*x + 1/
2*c)^5 - 6*I*a*tan(1/2*d*x + 1/2*c)^4 - 3*a*tan(1/2*d*x + 1/2*c) - 2*I*a)/(tan(1/2*d*x + 1/2*c)^2 - 1)^3)/d